

LARPEEK 10 G/30

Compuesto basado en Poliéter eter cetona (PEEK). Fibras de vidrio. Intrínsecamente retardante de llama. Compuesto libre de PFAS.

Existen versiones del producto citado en este documento que son aptas para aplicaciones en contacto con alimentos o para la fabricación de juguetes. En cualquier caso el fabricante debe verificar el uso del producto final en base a la normativa vigente en este campo.

Los productos mencionados en este documento no son aptos para aplicaciones en sectores farmacéutico, médico o dental.

PROPIEDADES FISICAS	STANDARD	VALOR UNIDADES de MEDIDA
Densidad	ISO 1183	1,51 g/cm³
Contracción lineal en inyección		
Longitudinal (2.0mm/60MPa)	ISO 294-4	0,40 ÷ 0,60 %
Transversal (2.0mm/60MPa)	ISO 294-4	0,80 ÷ 1,20 %
Estabilidad dimensional		55
Absorción de humedad		
a saturación, en aire	ISO 62-4	0,07 %
PROPIEDADES MECANICAS	STANDARD	VALOR UNIDADES de MEDIDA
Resistencia al impacto CHARPY		
Sin entalla a 23°C	ISO 179-1eU	60,0 kJ/m²
Con entalla a 23°C	ISO 179-1eA	8,0 kJ/m²
PROPIEDADES MECANICAS	STANDARD	VALOR UNIDADES de MEDIDA
Elongación a tracción		
A rotura (5 mm/min), a 23°C	ISO 527	2,4 %
A rotura (5 mm/min), a 60°C	ISO 527	2,3 %
A rotura (5 mm/min), a 90°C	ISO 527	2,2 %
A rotura (5 mm/min), a 120°C	ISO 527	1,7 %
A rotura (5 mm/min), a 150°C	ISO 527	1,6 %
Resistencia a la tracción		
A rotura (5 mm/min), a 23°C	ISO 527	180 MPa
A rotura (5 mm/min), a 60°C	ISO 527	160 MPa
A rotura (5 mm/min), a 90°C	ISO 527	150 MPa
A rotura (5 mm/min), a 120°C	ISO 527	140 MPa
A rotura (5 mm/min), a 150°C	ISO 527	105 MPa
Módulo elástico		
A tracción (1 mm/min), a 23°C	ISO 527	10500 MPa
A tracción (1 mm/min), a 60°C	ISO 527	10300 MPa
A tracción (1 mm/min), a 90°C	ISO 527	10000 MPa
A tracción (1 mm/min), a 120°C	ISO 527	9500 MPa
A tracción (1 mm/min), a 150°C	ISO 527	7500 MPa

LARPEEK 10 G/30

PROPIEDADES TERMICAS	STANDARD	VALOR UNIDADES de MEDIDA
Coeficiente de dilatación térmica lineal (CLTE)		
30°C a 100°C (longitudinal)	ISO 11359	20 \times 10 ⁻⁶ K ⁻¹
30°C a 100°C (transversal)	ISO 11359	35 \times 10 ⁻⁶ K ⁻¹
VICAT - Punto de reblandecimiento		
50 N (velocidad de calentamiento 120°C/h)	ISO 306	335 °C
HDT - Temperatura de deflexión térmica		
0,45 MPa	ISO 75	335 ℃
1,81 MPa	ISO 75	325 ℃
Conductividad Térmica		
En el plano	ASTM E 1461-92	0,4 W/(m·K)
Perpendicular al plano	ASTM E 1461-92	0,3 W/(m·K)
RESISTENCIA A LA LLAMA	STANDARD	VALOR UNIDADES de MEDIDA
Indice de Oxígeno	ASTM D 2863	36 %
Grado de flamabilidad		
espesor 3 mm	UL 94	V-0
espesor 1,5 mm	UL 94	V-0
GWFI - Hilo incandescente		
espesor 2 mm	IEC 60695-2-12	960 °C
GWIT - Hilo incandescente		
espesor 2 mm	IEC 60695-2-13	825 °C
PROPIEDADES ELECTRICAS	STANDARD	VALOR UNIDADES de MEDIDA
CTI - Comparative Tracking Index		
solución A (sin tensioactivo)	IEC 60112	175 V
Resistividad eléctrica		
superficial, seco	ASTM D 257 / ASTM D4496	1E12 ohm
Resistencia dieléctrica (corta duración)		
2.0 mm espesor, 23°C, seco	ASTM D 149	25 kV/mm

ALMACENAJE

Los envases se deben conservar sellados y en buen estado en un almacén seco, siempre protegidos de las inclemencias meteorológicas o de cualquier daño accidental.

MANIPULACION Y SEGURIDAD

Información detallada sobre el tratamiento seguro del material está indicada en las Ficha de Datos de Seguridad suministrada con la primera entrega. La ficha se puede reenviar en caso de pérdida.

CONDICIONES DE SECADO (Secador de aire caliente)

Pre secado necesario. Las condiciones de pre secado son: mínimo 3 horas a 150 ÷ 160°C. Aumentar el tiempo en caso de material muy húmedo. Contenido máximo de humedad sugerido: 0,05%. El uso de secador de aire seco u horno de vacío permite reducir el tiempo de secado.

PERFIL DE TEMPERATURA

Un perfil típico de temperatura en cilindro sería (zona 1 - zona 2 - zona 3 - boquilla): 360-365-380-390°C.

TIEMPO DE RESIDENCIA

Tiempo máximo de permanencia permitido: 15 minutos. No superes este límite. Número máximo de inyectadas completas en el cilindro sugeridas: 2 ÷ 5

TEMPERATURA EFECTIVA DE FUSION

Rango sugerido de temperaturas de fusión: 370 ÷ 400°C. En máquinas pequeñas, con ciclos cortos, es posible usar temperaturas de fusión más altas para mejorar la plastificación, fluidez y aspecto superficial, vigilando cualquier señal de degradación del material.

TEMPERATURA DE MOLDE

Rango sugerido de temperaturas de molde: 160 ÷ 210°C. Esta puede ser diferente de la marcada en máquina, debido a la eficacia del sistema de refrigeración y la precisión del control de temperatura del molde. Si la temperatura del molde es inferior a la sugerida, puede ser necesario un recocido del producto.

VELOCIDAD DE INYECCION

Velocidad de inyeccion recomendada: de media a alta. Los mejores resultados se logran utilizando un perfil de inyección.

VELOCIDAD TANGENCIAL DEL HUSILLO (V)

Máxima velocidad tangencial del husillo sugerida (V): $0.1 \div 0.15$ m/s. La velocidad de rotación máxima (en RPM) se puede calcular mediante la siguiente ecuación: RPM = V/d*19100, donde d es el diámetro del husillo en mm.

PRESION DE INYECCION

Presión máxima de inyección sugerida en la boquilla: 60 ÷ 150 MPa. Verifique la relación entre la presión específica (en la boquilla) y la presión hidráulica (aceite) en el manual de la máquina de moldeo.

SEGUNDA PRESION

Segunda presión sugerida típica (en la boquilla): 70 ÷ 100% de la presión de inyección.

COJÍN DE MASA FUNDIDA

Cojín mínimo sugerido: 3 ÷ 5 mm.

CONTRAPRESION

Contrapresión sugerida: 20 ÷ 80 bar (presión hidráulica).

USO DE RECUPERADO

Porcentaje máximo de recuperado sugerido: 15%. Se sugiere recuperación directa junto a máquina. El recuperado debe secarse.

MOLDE CON CANAL CALIENTE

Los moldes de canal caliente se pueden usar cuando se asegura un control muy ajustado de la temperatura.

BOQUILLAS CON VÁLVULA / ENTRADAS PEQUEÑAS

Boquillas con válvula o entradas pequeñas se pueden usar.

DESGASTE E CORROSION DE MAQUINARIA

Normalmente, las condiciones críticas de proceso (alta velocidad de inyección, alta presión y alta velocidad de rotación del husillo etc) y/o condiciones geométricas desfavorables (espesores de pared bajos, diámtros pequeños, radios de filete afilados etc) provocan desgaste en la maquinaria. El desgaste aumenta en el caso de materiales con carga (particularmente con fibra). Se sugiere usar tratamientos superficiales apropiados en estos casos, así como salida de gases adecuada para evitar el sobrecalentamiento del material. Es aconsejable el uso de acero con contenido elevado de cromo (Cr > 13%) o con un tratamiento específico(p. ej. cromado o niquelado). Se sugiere utilizar un acero resistente al desgaste para la construcción de molde

Para más información consulte la "Guía de inyección" (en inglés).

CERTIFICADOS

Por favor, consulte nuestra web o póngase en contacto con LATI para más detalles.